Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
J Invertebr Pathol ; 204: 108102, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604562

RESUMO

The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.

2.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592755

RESUMO

Tetranychus urticae, a prominent pest mite in strawberry and vegetable cultivation in China, has developed escalating resistance due to extensive chemical pesticide application. Consequently, there is an urgent need to identify safe and efficacious methods to reduce resistance development. In this study, 38 commercially available plant essential oils (EOs) were screened for their acaricidal potential and ability to inhibit oviposition. The findings revealed that 13 EOs exhibited notable acaricidal activity, with lemon EO demonstrating the highest toxicity, followed by sage, patchouli, frankincense, lemongrass, palmarosa, and oregano EOs. In addition, 18 EOs displayed significant inhibitory effects on oviposition, with lemon EO exhibiting the highest inhibition rate (99.15%) and inhibition index (0.98). Subsequently, sage, frankincense, clove, lemongrass, oregano, patchouli, myrrh, black pepper, palmarosa, and geranium EOs also showed inhibition rates exceeding 50%. Despite black pepper, clove, myrrh, and oregano EOs demonstrating relatively low toxicity against T. urticae, they exhibited heightened efficacy in inhibiting oviposition and suppressing population expansion. This study conducted a comparative assessment of the acaricidal and oviposition inhibition activities of EOs and their principal constituents, thus providing a theoretical basis for the development of botanical acaricides against T. urticae.

3.
Exp Appl Acarol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448755

RESUMO

Spider mites were considered secondary pests of walnut production in California, under the control of phytoseiid predators. Due to increased importance as walnut pests in recent decades there is renewed interest in the structure and function of the associated phytoseiid assemblage. In this study we report the results from a 3 year survey of the tetranychid and phytoseiid assemblages in walnut orchards in the Central Valley of California. The survey was conducted to determine the range and dominance of web-spinning Tetranychus species present, to investigate the species richness and dominance of the phytoseiid species present, and to explore whether patterns of variation in the relative abundance of phytoseiid species could be explained by one or more explanatory variables. Tetranychus urticae was the dominant spider mite in all growing regions and years with T. pacificus and T. turkestani also present in orchards in the southern San Joaquin Valley. Phytoseiid species richness declined with latitude among the three walnut growing regions and of the 13 species found Amblyseius similoides, Euseius stipulatus, Galendromus occidentalis and Typhlodromus caudiglans were the most abundant and widespread species present. Mean proportional abundance significantly increased from early (mid May-July) to late (August-mid October) season and from southern to northern growing regions for Type II and IV predators, but significantly decreased from early to late season and from southern to northern growing regions for Type III predators. The mean proportional abundance of Type II predators, particularly G. occidentalis, significantly increased and that of Type III predators significantly decreased with mean Tetranychus density in individual orchards. The current survey provides a more in-depth analysis of mite assemblages in walnut orchards in California and can be used to better inform adaptive management strategies for integrated mite management in the future.

4.
Exp Appl Acarol ; 92(3): 403-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489086

RESUMO

Spider mites (Acari: Tetranychidae) are polyphagous pests of economic importance in agriculture, among which the two-spotted spider mite Tetranychus urticae Koch has spread widely worldwide as an invasive species, posing a serious threat to fruit tree production in China, including Beijing. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is also a worldwide pest of fruit trees and woody ornamental plants. The cassava mite, Tetranychus truncatus Ehara, is mainly found in Asian countries, including China, Korea and Japan, and mainly affects fruit trees and agricultural crops. These three species of spider mites are widespread and serious fruit tree pests in Beijing. Rapid and accurate identification of spider mites is essential for effective pest and plant quarantine in Beijing orchard fields. The identification of spider mite species is difficult due to their limited morphological characteristics. Although the identification of insect and mite species based on PCR and real-time polymerase chain reaction TaqMan is becoming increasingly common, DNA extraction is difficult, expensive and time-consuming due to the minute size of spider mites. Therefore, the objective of this study was to establish a direct multiplex PCR method for the simultaneous identification of three common species of spider mites in orchards, A. viennensis, T. truncatus and T. urticae, to provide technical support for the differentiation of spider mite species and phytosanitary measures in orchards in Beijing. Based on the mitochondrial cytochrome c oxidase subunit I (COI) of the two-spotted spider mite and the cassava mite and the 18S gene sequence of the hawthorn spider mite as the amplification target, three pairs of specific primers were designed, and the primer concentrations were optimized to establish a direct multiplex PCR system for the rapid and accurate discrimination of the three spider mites without the need for DNA extraction and purification. The method showed a high sensitivity of 0.047 ng for T. truncatus and T. urticae DNA and 0.0002 ng for A. viennensis. This method eliminates the DNA extraction and sequencing procedures of spider mite samples, offers a possibility for rapid monitoring of multiple spider mites in an integrated microarray laboratory system, reducing the time and cost of leaf mite identification and quarantine monitoring in the field.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Tetranychidae , Animais , Tetranychidae/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Pequim , Complexo IV da Cadeia de Transporte de Elétrons/genética
5.
Pest Manag Sci ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446401

RESUMO

BACKGROUND: Mycorrhizal plants show enhanced resistance to biotic stresses, but few studies have addressed mycorrhiza-induced resistance (MIR) against biotic challenges in woody plants, particularly citrus. Here we present a comparative study of two citrus species, Citrus aurantium, which is resistant to Tetranychus urticae, and Citrus reshni, which is highly susceptible to T. urticae. Although both mycorrhizal species are protected in locally infested leaves, they show very distinct responses to MIR. RESULTS: Previous studies have indicated that C. aurantium is insensitive to MIR in systemic tissues and MIR-triggered antixenosis. Conversely, C. reshni is highly responsive to MIR which triggers local, systemic and indirect defense, and antixenosis against the pest. Transcriptional, hormonal and inhibition assays in C. reshni indicated the regulation of jasmonic acid (JA)- and abscisic acid-dependent responses in MIR. The phytohormone jasmonic acid isoleucine (JA-Ile) and the JA biosynthesis gene LOX2 are primed at early timepoints. Evidence indicates a metabolic flux from phenylpropanoids to specific flavones that are primed at 24 h post infestation (hpi). MIR also triggers the priming of naringenin in mycorrhizal C. reshni, which shows a strong correlation with several flavones and JA-Ile that over-accumulate in mycorrhizal plants. Treatment with an inhibitor of phenylpropanoid biosynthesis C4H enzyme impaired resistance and reduced the symbiosis, demonstrating that phenylpropanoids and derivatives mediate MIR in C. reshni. CONCLUSION: MIR's effectiveness is inversely correlated to basal immunity in different citrus species, and provides multifaceted protection against T. urticae in susceptible C. reshni, activating rapid local and systemic defenses that are mainly regulated by the accumulation of specific flavones and priming of JA-dependent responses. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
Pest Manag Sci ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451019

RESUMO

BACKGROUND: The two-spotted spider mite Tetranychus urticae causes significant damage to ornamental, cotton, sugarcane and horticultural crops in Australia. It has a long history of developing resistance to many acaricides including bifenazate. A mutation in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b is recognized as the primary mechanism of bifenazate resistance. To investigate the resistance mechanisms against bifenazate in Australian two-spotted spider mite, we sequenced the complete mitochondrion genome of five mite strains including a susceptible and bifenazate-resistant strain. RESULTS: We identified a novel mutation D252N in the G126S background at cytochrome b being the cause of bifenazate resistance in a bifenazate-resistant strain, Bram. We validated the role of this mutation combination by reciprocal crosses between a bifenazate resistant and susceptible strain. By doing these crosses we confirmed the pattern of inheritance was maternal. Additionally, mitochondrial heteroplasmy was not observed by single mite genotyping of the mutations in cytb in a known bifenazate-resistant strain Bram. The phylogenetic analysis with the complete mitochondrion genome sequences revealed that Australian two-spotted spider mite strains are closely related to the green form of T. urticae found in China. CONCLUSIONS: The novel mutation D252N found in the cytochrome b in the G126S background was revealed to be the main cause of bifenazate resistance in the Australian T. urticae strain Bram. © 2024 Society of Chemical Industry.

7.
Nat Prod Res ; : 1-7, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506592

RESUMO

Tetranychus urticae, popularly known as spider mite, is a pest that causes several economic losses to crops. Thus, this work evaluated the effect of essential oils from the leaves of Piper macedoi and Piper arboreum on managing T. urticae. The chemical compounds present in essential oils were identified by gas chromatography. Tests were carried out to evaluate the acaricidal activity by fumigation effect and direct contact with T. urticae. The results showed that LC50 values for the essential oils of P. macedoi and P. arboreum in the fumigation effect were 16.15 and 50.53 µL L-1 air, respectively. Using the contact application route, the LC50 values for the essential oil of P. macedoi was 17.16 µL mL-1, and for P arboreum, it was 15.17 µL mL-1. So, this work showed that essential oils of Piper macedoi and Piper arboreum could be used as possible alternative to managing T. urticae.

8.
Plant Cell Rep ; 43(3): 70, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358510

RESUMO

KEY MESSAGE: NOI10 and NOI11 are two RIN4-like/NOI proteins that participate in the immune response of the Arabidopsis plant and affect the RIN4-regulated mechanisms involving the R-proteins RPM1 and RPS2. The immune response in plants depends on the regulation of signaling pathways triggered by pathogens and herbivores. RIN4, a protein of the RIN4-like/NOI family, is considered to be a central immune signal in the interactions of plants and pathogens. In Arabidopsis thaliana, four of the 15 members of the RIN4-like/NOI family (NOI3, NOI5, NOI10, and NOI11) were induced in response to the plant herbivore Tetranychus urticae. While overexpressing NOI10 and NOI11 plants did not affect mite performance, opposite callose accumulation patterns were observed when compared to RIN4 overexpressing plants. In vitro and in vivo analyses demonstrated the interaction of NOI10 and NOI11 with the RIN4 interactors RPM1, RPS2, and RIPK, suggesting a role in the context of the RIN4-regulated immune response. Transient expression experiments in Nicotiana benthamiana evidenced that NOI10 and NOI11 differed from RIN4 in their functionality. Furthermore, overexpressing NOI10 and NOI11 plants had significant differences in susceptibility with WT and overexpressing RIN4 plants when challenged with Pseudomonas syringae bacteria expressing the AvrRpt2 or the AvrRpm1 effectors. These results demonstrate the participation of NOI10 and NOI11 in the RIN4-mediated pathway. Whereas RIN4 is considered a guardee protein, NOI10 and NOI11 could act as decoys to modulate the concerted activity of effectors and R-proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Herbivoria , Tabaco/genética , Pseudomonas , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
9.
Insect Sci ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388801

RESUMO

The two-spotted spider mite (Tetranychus urticae) is one of the most well-known pesticide-resistant agricultural pests, with resistance often attributed to changes such as target-site mutations and detoxification activation. Recent studies show that pesticide resistance can also be influenced by symbionts, but their involvement in this process in spider mites remains uncertain. Here, we found that infection with Wolbachia, a well-known bacterial reproductive manipulator, significantly increased mite survival after exposure to the insecticides abamectin, cyflumetofen, and pyridaben. Wolbachia-infected (WI) mites showed higher expression of detoxification genes such as P450, glutathione-S-transferase (GST), ABC transporters, and carboxyl/cholinesterases. RNA interference experiments confirmed the role of the two above-mentioned detoxification genes, TuCYP392D2 and TuGSTd05, in pesticide resistance. Increased GST activities were also observed in abamectin-treated WI mites. In addition, when wild populations were treated with abamectin, WI mites generally showed better survival than uninfected mites. However, genetically homogeneous mites with different Wolbachia strains showed similar survival. Finally, abamectin treatment increased Wolbachia abundance without altering the mite's bacterial community. This finding highlights the role of Wolbachia in orchestrating pesticide resistance by modulating host detoxification. By unraveling the intricate interplay between symbionts and pesticide resistance, our study lays the groundwork for pioneering strategies to combat agricultural pests.

10.
BMC Plant Biol ; 24(1): 120, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369495

RESUMO

BACKGROUND: Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS: To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION: These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.


Assuntos
Arabidopsis , Borboletas , Animais , Transcriptoma , Herbivoria/fisiologia , Mastigação , Borboletas/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo
11.
Insects ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276822

RESUMO

Tetranychus urticae is a highly polyphagous and global pest. Spider mites primarily feed on the underside of leaves, resulting in decreased photosynthesis, nutritional loss, and the development of chlorotic patches. We investigated the life tables of the two-spotted spider mite T. urticae on fungal endophyte Beauveria bassiana colonized and untreated plants of the common Phaseolus vulgaris L., a bean plant. Based on the age-stage, two-sex life table theory, data were evaluated. The mites raised on untreated plants had protonymphs, deutonymphs, and total pre-adult stage durations that were considerably shorter (1.76, 2.14, and 9.77 d, respectively) than the mites raised on plants that had been colonized (2.02, 2.45, and 10.49 d, respectively). The fecundity (F) varied from 28.01 eggs per female of colonized plants to 57.67 eggs per female of endophyte-untreated plants. The net reproductive rate (R0) in the plants with and without endophytes was 19.26 and 42.53 brood, respectively. The untreated plants had an intrinsic rate of increase (rm) of 0.245 days as opposed to the colonized plants, which had an r of 0.196 days and a finite rate of increase (λ) (1.27 and 1.21, respectively). Population forecasts based on a two-sex, age-stage life table demonstrated the dynamism and variability of the stage structure. Furthermore, the colonization of B. bassiana had a negative impact on the growth and development of T. urticae. It lowered the adult mite life span, female fecundity, net reproduction rate, and intrinsic growth rate. We propose that future research should better use entomopathogenic fungal endophytes to understand host plant resistance strategies in integrated pest management.

12.
Pest Manag Sci ; 80(2): 698-707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759371

RESUMO

BACKGROUND: Tetranychus urticae is a hard-to-control pest of greenhouse strawberry production. Nighttime ultraviolet B (UV-B) radiation using light reflection sheets (LRS) has been applied as a physical method to control T. urticae through direct ovicidal effects (the UV method). However, because strawberry leaves grow more densely, UV-B radiation fails to reach the lower leaf surfaces inhabited by spider mites; therefore, a complementary method is required. We propose the supplemental application of phytoseiid mites in greenhouse strawberry production. We evaluated the control effects of UV-B irradiation, phytoseiid mite application and their combined use. The effects of UV-B irradiation on the degree of overlap relative to the independent distributions (ω) between predators and prey were also analyzed. RESULTS: The UV method alone maintained low T. urticae density levels from November to February; however, mite populations increased from March onward. Phytoseiid mite application in January and February without UV-B irradiation resulted in a temporary increase in spider mites in March and/or April. By contrast, combined application of the UV method and phytoseiid mites had a greater control effect during the strawberry growing season. The ω values were higher for the UV method compared with no UV-B irradiation, suggesting that UV-B irradiation increased phytoseiid mite foraging rates. CONCLUSION: The release of phytoseiid mites compensated for the shortcomings of the UV method, and UV-B irradiation promoted predation by phytoseiid mites by increasing the behavioral numerical response. Consequently, combined application of UV-B irradiation and phytoseiid mites is optimal for T. urticae control in greenhouse strawberry production. © 2023 Society of Chemical Industry.


Assuntos
Fragaria , Tetranychidae , Animais , Tetranychidae/fisiologia , Plantas , Raios Ultravioleta , Comportamento Predatório , Controle Biológico de Vetores/métodos
13.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469392

RESUMO

Abstract Agriculture sector of Saudi Arabia is growing swiftly and tomato is an important crop cultivated mostly under green houses. Unfortunately, it is facing severe infestation due to divers mite species. Present study, relates to evaluation of toxicity of oxamyl against two phytophagous mites; Aculops lycopersici and Tetranychus urticae, isolated from tomato plants suffering from infestation. Simultaneous effect of oxamyl on two predatory mites; Neosiulus cucumeris and Euseius scutalis, was also evaluated. Three concentrations of oxamyl; half of the recommended dose (HRD), recommended dose (RD) and double recommended dose (DRD), were used against each mite specie to observe mortality within seven days as compared to the control. Significant mortality of 97.91% and 93.92% was observed in A. lycopersici and T. urticae, respectively at RD. In case of predatory mites; N. cucumeris and E. scutalis, mortality was 60.61% and 64.48%, respectively, under same conditions. Mortality of mites observed at HRD was insignificant and there was negligible increase in mortality at DRD. Oxamyl being less toxic to predatory mites and significantly mortal to phytophagous mites is recommended as a tool to as a tool to achieve biological control parallel to pesticidal effect.


Resumo O setor agrícola da Arábia Saudita está crescendo rapidamente e o tomate é uma cultura importante cultivada principalmente em estufas. Infelizmente, está enfrentando uma infestação severa devido a diversas espécies de ácaros. O presente estudo refere-se à avaliação da toxicidade do oxamil contra dois ácaros fitófagos; Aculops lycopersici e Tetranychus urticae, isolados de tomateiros infestados. Efeito simultâneo de oxamil em dois ácaros predadores; Neosiulus cucumeris e Euseius scutalis, também foi avaliado. Três concentrações de oxamil; metade da dose recomendada (HRD), dose recomendada (RD) e dose dupla recomendada (DRD), foram usados contra cada espécie de ácaro para observar a mortalidade em sete dias em comparação com o controle. Mortalidade significativa de 97,91% e 93,92% foi observada em A. lycopersici e T. urticae, respectivamente no RD. No caso de ácaros predadores; N. cucumeris e E. scutalis, a mortalidade foi de 60,61% e 64,48%, respectivamente, nas mesmas condições. A mortalidade de ácaros observada no HRD foi insignificante e houve um aumento insignificante na mortalidade no DRD. Oxamil sendo menos tóxico para ácaros predadores e significativamente mortal para ácaros fitófagos é recomendado como ferramenta para alcançar o controle biológico paralelo ao efeito pesticida.

14.
Braz. j. biol ; 84: e253469, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364522

RESUMO

Agriculture sector of Saudi Arabia is growing swiftly and tomato is an important crop cultivated mostly under green houses. Unfortunately, it is facing severe infestation due to divers mite species. Present study, relates to evaluation of toxicity of oxamyl against two phytophagous mites; Aculops lycopersici and Tetranychus urticae, isolated from tomato plants suffering from infestation. Simultaneous effect of oxamyl on two predatory mites; Neosiulus cucumeris and Euseius scutalis, was also evaluated. Three concentrations of oxamyl; half of the recommended dose (HRD), recommended dose (RD) and double recommended dose (DRD), were used against each mite specie to observe mortality within seven days as compared to the control. Significant mortality of 97.91% and 93.92% was observed in A. lycopersici and T. urticae, respectively at RD. In case of predatory mites; N. cucumeris and E. scutalis, mortality was 60.61% and 64.48%, respectively, under same conditions. Mortality of mites observed at HRD was insignificant and there was negligible increase in mortality at DRD. Oxamyl being less toxic to predatory mites and significantly mortal to phytophagous mites is recommended as a tool to as a tool to achieve biological control parallel to pesticidal effect.


O setor agrícola da Arábia Saudita está crescendo rapidamente e o tomate é uma cultura importante cultivada principalmente em estufas. Infelizmente, está enfrentando uma infestação severa devido a diversas espécies de ácaros. O presente estudo refere-se à avaliação da toxicidade do oxamil contra dois ácaros fitófagos; Aculops lycopersici e Tetranychus urticae, isolados de tomateiros infestados. Efeito simultâneo de oxamil em dois ácaros predadores; Neosiulus cucumeris e Euseius scutalis, também foi avaliado. Três concentrações de oxamil; metade da dose recomendada (HRD), dose recomendada (RD) e dose dupla recomendada (DRD), foram usados ​​contra cada espécie de ácaro para observar a mortalidade em sete dias em comparação com o controle. Mortalidade significativa de 97,91% e 93,92% foi observada em A. lycopersici e T. urticae, respectivamente no RD. No caso de ácaros predadores; N. cucumeris e E. scutalis, a mortalidade foi de 60,61% e 64,48%, respectivamente, nas mesmas condições. A mortalidade de ácaros observada no HRD foi insignificante e houve um aumento insignificante na mortalidade no DRD. Oxamil sendo menos tóxico para ácaros predadores e significativamente mortal para ácaros fitófagos é recomendado como ferramenta para alcançar o controle biológico paralelo ao efeito pesticida.


Assuntos
Animais , Controle Biológico de Vetores , Solanum lycopersicum , Agricultura , Ácaros , Arábia Saudita
15.
Exp Appl Acarol ; 92(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112881

RESUMO

The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.


Assuntos
Muda , Tetranychidae , Animais , Muda/genética , Ecdisona , Tetranychidae/genética , Receptores Citoplasmáticos e Nucleares/genética
16.
J Pestic Sci ; 48(4): 211-217, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38090217

RESUMO

Flupentiofenox, which has a unique chemical structure, is a novel acaricide that has been developed by the Kumiai Chemical Industry Co., Ltd. Flupentiofenox exerted significant acaricidal activities against spider mites Tetranychus urticae and Panonychus citri at all developmental stages even at extremely low concentrations, as compared with its practical concentration (80 ppm) for use in mites and was effective against spider mite populations that are resistant to widely used commercial acaricides. These results suggested that flupentiofenox could be used effectively for the control and prevention of spider mite infestation. Additionally, flupentiofenox had a more rapid effect than acetyl CoA carboxylase inhibitors, but it had a relatively slower effect than mitochondrial electron transport inhibitors and glutamate-gated chloride channel modulators. Overall, flupentiofenox is assumed to have a new mode of action.

17.
PeerJ ; 11: e16461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034871

RESUMO

Environmental factors like temperature have a great impact on the predation potential of biological control agents. In the present study, the functional response of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae) to the pest mite Tetranychus urticae (Acari: Tetranychidae) at moderate to high temperatures under laboratory conditions was determined. The study aimed to understand the prey-predator interaction under different temperatures and prey densities. Five constant temperatures (24 °C, 27 °C, 30 °C, 33 °C, and 36 °C), and thirteen prey densities (4, 5, 8, 10, 12, 15, 16, 20, 24, 25, 30, 32, and 40) of each stage (adult, nymph, larvae, and egg stage) were employed in the experiment. Observations were made 24 h after the start of each experiment. Results revealed that the predatory mites showed type II functional response to adult females of T. urticae, whereas type I to other stages (nymphs, larvae, and eggs) of T. urticae. The predation capability of adult predatory mites on T. urticae was significant at 24-36 °C. The instantaneous attack rate (a) of N. californicus increased and the handling time (Th) decreased with an increase in temperature. The maximum attack rate was recorded at 36 °C (1.28) for the egg stage. The longest handling time was (0.78) for the larval stage of T. urticae at 30 °C. Daily consumption increased with increasing prey density. Maximum daily consumption was observed at 33 °C (30.00) at the prey density of 40. Searching efficiency decreased with the increase in prey density but was found to increase with the rise in temperature. N. californicus was found to be voracious on the larval and egg stages. Conclusively, the incorporation of N. californicus at earlier stages (larvae and eggs) of T. urticae would be beneficial under warm conditions because managing a pest at its initial stage will save the crop from major losses. The results presented in this study at various temperatures will be helpful in different areas with different temperature extremes. The results of the functional response can also be applied to mass rearing, quality testing, and integrated pest management programmes.


Assuntos
Ácaros , Tetranychidae , Animais , Feminino , Tetranychidae/fisiologia , Temperatura , Ácaros/fisiologia , Larva , Comportamento Predatório/fisiologia , Ninfa
18.
Saudi J Biol Sci ; 30(12): 103843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020231

RESUMO

Contemporary agriculture heavily relies on pesticides for pest eradication and disease management. Consequently, current study was carried out to assess the acaricidal/antifungal efficacy of emulsifiable concentrate (10 % EC) derived from Boswellia carterii (B. carterii) against adult females of Tetranychus urticae (T. urticae), and five fungal pathogens. The meticulous examination of the chemical constitution of the crude extracts derived from the resin of B. carterii was conducted through the employment of the venerable technique known as Gas-Liquid Chromatography (GLC). The formulated petroleum-ether extract (FPEE) and formulated ethyl-acetate extract (FEAE) of B. carterii at a concentration of 10 mg ml-1 exhibited notable antioxidant activity with rates of 62.0 % and 90.8 %, respectively. In vitro, the FEAE exhibited potent inhibition against all the tested phytopathogenic fungi at different concentrations, whereas FPEE showed comparatively less efficacy. Interestingly, at 4000 ppm concentration, FEAE completely ceased the mycelial growth compared with the control. Moreover, following a span of 72 h of intervention, FPEE exhibited a greater degree of toxicity towards mature females of the T. urticae. This was evidenced by the LC50 value of 422.52 parts per million (ppm) for FPEE, which surpassed the LC50 value of 539.50 ppm observed for FEAE. In summary, the present study indicates that B. carterii resin formulated as an emulsifiable concentrate (10 % EC) can offer a natural and effective alternative for integrated pest management, thereby reducing reliance on synthetic pesticides and offering a more environmentally sustainable strategy for pest control.

19.
Insects ; 14(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887835

RESUMO

It has long been disputed whether Tetranychus cinnabarinus and Tetranychus urticae belong to the same genus, with T. cinnabarinus regarded as a red form of T. urticae. However, it is unclear why T. urticae and T. cinnabarinus have different body colors. Since carotenoids are responsible for the color of many organisms, the carotenoid profiles of T. cinnabarinus and T. urticae were compared by HPLC. There was no difference in carotenoid type, but T. cinnabarinus contained significantly more neoxanthin, astaxanthin, α-carotene, ß-carotene, and γ-carotene, which may contribute to the deep red color. The transcriptome sequencing of both species identified 4079 differentially expressed genes (DEGs), of which 12 were related to carotenoid metabolism. RNA interference (RNAi) experiments demonstrated that silencing seven of these DEGs resulted in the different accumulation of carotenoid compounds in T. cinnabarinus and T. urticae. In addition, the body of T. urticae turned yellow after two days of feeding with UGT double-stranded RNAs and ß-UGT small interfering RNAs. In conclusion, differences in the carotenoid profiles of T. urticae and T. cinnabarinus may be responsible for the different body colors.

20.
Exp Appl Acarol ; 91(2): 279-290, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787901

RESUMO

Tetranychus urticae is an important pest worldwide. The auto-dissemination of spores of entomopathogenic fungi from an infected individual to conspecifics may be important for controlling pests that can build high populations. The current study was carried out to determine the auto-dissemination of the entomopathogenic fungus Cordyceps fumosorosea strain PFs-1 (Priority®) between T. urticae females. The study consisted of four experiments. First, the efficacy of entomopathogenic fungus bioassays was assessed in Petri dishes (experiment 1) and on potted bean plants (experiment 2). In the auto-dissemination trials (experiments 3 and 4, in Petri dishes and on potted plants, respectively), contaminated adult females (1-5) were released among uncontaminated females (10 individuals). All experiments were carried out separately, and observations were made on days 3, 5, and 7. In exp. 1, the control was different from Priority on all observation days. In exp. 2, the average number of surviving individuals in the control was significantly higher than in the Priority treatment. In the auto-dissemination experiments, as the number of contaminated individuals increased, the mortality rate of uncontaminated individuals also increased, in exp. 3 (Petri dishes) on all observation days, and in exp. 4 (potted plants) only on days 5 and 7. The median lethal time (LT50) decreased as the number of individuals contaminated with Priority increased in both Petri dish and pot trials. Consequently, the effectiveness of biological control may increase with the occurrence of indirect contamination from infected to uncontaminated individuals.


Assuntos
Cordyceps , Fabaceae , Tetranychidae , Humanos , Feminino , Animais , Tetranychidae/microbiologia , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...